
Generic Model Interpretations:

POSIX.1 and SQL

D. Elliott Bell�

Mitretek Systems

7525 Colshire Drive

McLean VA 22102

Abstract

An improvement to the traditional process of

model interpretation is described. The improve-

ment applies to trusted systems that conform to

industry standards that are conducive to generic

model interpretation. Generic model interpreta-

tion results for POSIX.1 and SQL are presented.

Keywords: Security model, model interpreta-

tion, POSIX, SQL, TCSEC

Introduction

The modeling requirements for Division B of

the Trusted Computer System Evaluation Crite-

ria (TCSEC) [TCSEC85] derive from the very

earliest experiences in conceiving and producing

trusted computer systems. The Anderson report

[AND72] called for a \conceptual design, that is

a mathematical model" of a secure computer sys-

tem as part of the plan to realize the \Reference

Monitor Concept" in an implementation. E�orts

during the 1970's and early 1980's (see for ex-

ample [WALT74], [BLP73], [LPB73], [BELL73],

[BLP75], [GOME82], [GOME84]) included con-

ceptual design tools in the form of mathematical

models for use in assessing the (de�ned) security

of systems and products of interest.

Work before (and system and product evalu-

ation since) the publication of the TCSEC has

been very consistent in terms of the elements

and the correspondences that are required in a

�Work performedunder contractsMDA-904-C-6017 and

MDA-904-C-9999.

model interpretation of a speci�c implementation.

In TCSEC terms, what is required is a Formal

Security Policy (FSP), a Formal Security Policy

Model (FSPM), a Descriptive Top-Level Speci�-

cation (DTLS), and connections between them.

The required connection between the model and

the policy is that it be a model of the policy in

question so that modeling results will allow policy-

relevant statements to be made about the system

at issue. The model itself must also be shown to

be sound and free from defect.

There must also be a (descriptive top-level)

speci�cation of the system. This abstraction of

the system at its interface must be shown to corre-

spond to the model. The notion is that the model

results | usually of the form \this transition pre-

serves the important notions of `security' " | are

inherited by the system at the level of the speci-

�cation if the individual system calls (or gates or

entry points) exhibit the same behavior as model

transitions that have been analyzed and found \se-

cure".

In terms of the \design assurance chain" shown

in Figure 1, there must exist documentation for

POLICY (= MODEL
MI
(= DTLS

Figure 1: Design Assurance Chain

POLICY, MODEL, and DTLS, there must be ar-

guments that the correspondences indicated by

the arrows between them are available, and the ar-



guments for correspondence must be convincing.

The focus of this paper is Model Interpretation

(MI), shown as the right-most arrow of Figure 1.

All �ve conditions (policy, model, DTLS, and two

arrows) are termed the \B2 checks".

Product evaluation under the TCSEC thus re-

quires (a) a generic (formal security) policy; (b) a

(formal security policy) model of that policy, to-

gether with results that assure its soundness and

freedom from error; (c) a (descriptive top-level)

speci�cation of the TCB interface; and (d) a cor-

respondence between the DTLS and the model,

the model \interpretation".

Satisfaction of the B2 checks for a proprietary

computing system builds directly on that system's

idiosyncratic characteristics at the boundary of its

Trusted Computing Base (TCB). Thus while gen-

eral modeling resources can be used, the step of

matching the system to the modeling entities is

by nature speci�c to the system.

The trend in trusted products towards com-

pliance with industry standards | especially the

Portable Operating System Interface (POSIX)

and the Standard Query Language (SQL) |

makes possible a revision of the traditional pro-

cedure for satisfying the B2 checks. Rather than

matching every system design directly to a model,

one can produce a generic model interpretation

for each industry standard, thereafter using the

results to simplify and reduce the task of model

interpretation for conforming implementations.

In terms of the generic \design assurance chain"

in Figure 2, the Generic Model Interpretation

POLICY (= MODEL
GMI
 �

Industry

Standard

Figure 2: Generic Design Assurance Chain

(GMI) from the standard to the model will be

available at the time that the product-speci�c

model interpretation begins. Since a conforming

implementation will match the speci�cation of the

standard by de�nition, a model interpretation task

will be limited to any minor di�erences between

the standard and the product. The production

and review of the resulting model interpretation

will be easier tasks, smaller tasks, and tasks that

require substantially less time to perform.

This paper presents the results of a recent e�ort

to create generic model interpretations for both

POSIX and SQL (see [POSIX.1] and [LEFF91],

respectively).

The next two sections describe the processes

of producing and using a generic model interpre-

tation. The following two sections describe the

results of applying this process to POSIX.1 and

SQL. The �nal section summarizes the work.

Producing a Generic Model

Interpretation

The model interpretation portion of the B2 checks

consists of matching part of the system's TCB in-

terface to the security model being used. The re-

sults can be viewed conceptually as three tables.

The �rst table (Figure 3) identi�es which of the

Name Interface? Reason

module-001 no : : :

module-002 yes : : :

module-003 yes : : :

.

..
.
..

.

..

module-998 no : : :

module-999 yes : : :

Figure 3: TCB Interface Table

TCB modules are visible at the TCB interface.

The second table (Figure 4) identi�es which of

Name Model? Reason

module-002 no : : :

module-003 yes : : :

module-017 no : : :

.

..
.
..

.

..

module-952 no : : :

module-999 yes : : :

Figure 4: Modules to Model

the TCB-interface modules should be interpreted

in modeling terms. The last table (Figure 5) lists

the model rules (or transitions) that correspond to

the TCB call.

The construction and justi�cation of these three

tables constitutes the bulk of the task of \model

interpretation". In an ideal situation, the system

or product would be stable and fully documented.

There would also be resources available for an-

swering questions and providing clari�cation. The



Name Rule

module-003 �3

module-042 �12; �5

module-116 �4

.

.

.
.
.
.

module-666 �12; �7; �16

module-999 �7

Figure 5: Correspondence to Model

e�ort of constructing the �rst table would begin

with a list of all the modules that constitute the

TCB. Review of each of the modules would de-

termine whether or not it is part of the TCB in-

terface, and whether it is \visible" at the TCB

interface. The subset of the modules identi�ed as

\at the interface" in the construction of the TCB-

interface table would be the starting point for

the modules-to-model table. The determination of

whether a module should be modeled is more com-

plex. It is dependent on such things as which sys-

tem abstractions are exported by the TCB, which

modules are available to ordinary users (rather

than just to specially-privileged users), whether

the module's action is part of access-control-policy

mediation, and whether the module's action is a

null action in a modeling context. Since the pro-

cess of determining whether a module should be

modeled is tightly coupled with the assignment

of a corresponding model rule (or rules), the con-

struction of the model-correspondence table will

usually proceed in parallel with the construction

of the modules-to-model table.

In less ideal situations (such as system model

interpretations and product model interpretations

while the system is still in ux), the same tables

must be constructed, but the available materials

are less complete. One must therefore proceed

cautiously, realizing that many conclusions will

have to be conditional and may have to be revised

when more information becomes available.

Analysis of a generic industry standard entails

a double-pronged e�ort. The �rst e�ort is the re-

view of all the system calls according to their type.

The set of types is developed inductively as the

analysis proceeds. The second analytical approach

is to assess the system calls with regard to their

availability to di�erent classes of users and to their

relation to the enumerated policies that are of in-

terest. This analysis is referred to as the \SAP"

analysis.1 A set of guidelines for SAP analysis is

provided in the annex.

Consideration of both the types and SAP re-

sults will allow a determination of which TCB

modules are the proper ones for generic model

interpretation. The �nal step is identifying the

correspondences between system calls and model

rules to complete the construction of the generic

model interpretation.

Using a Generic Model Inter-

pretation

A generic model interpretation provides a start-

ing point for the review of a model interpreta-

tion of a conforming implementation in the form

of a Correspondence-to-Model table. A completed

model interpretation for a speci�c implementation

will also include a Correspondence-to-Model table.

A comparison of those two tables will be the �rst

step in evaluating the speci�c model interpreta-

tion.

Name Rule Name Rule

mod-n1 �n1 mod-m1 �m1

mod-n2 �n2 mod-m2 �m2

mod-n3 �n3 mod-m3 �m3

.

.

.
.
.
.

.

.

.
.
.
.

mod-nk�1 �nk�1 mod-mk�1 �mk�1

mod-nk �k mod-mk �mk

GMI MI

Figure 6: Comparison of Two Correspondences

The two model-correspondence tables have four

modes of comparison:

1. an entry in the speci�c table matches an en-

try on the generic table exactly in both the

\name" and \rules" value;

2. an entry in the speci�c table matches the

\name" value, but the corresponding rules are

not the same;

1The designation \SAP" derives from the codes used

during the analysis: \S" refers to system calls that are

available to a Standard user. \A" refers to system calls

that include some extra e�ect for users with Appropriate

privilege. \P" refers to system calls that relate to the enu-

merated Policies.



3. an entry in the speci�c table does not match

any entry's \name" value in the generic table;

and

4. an entry in the generic table does not match

any entry's \name" value in the speci�c

table.2

The generic model interpretation results apply

to the speci�c implementation in the �rst case. In

the other cases, the anomaly has to be resolved.

The question is not \what mistake has been made

in the speci�c model interpretation?" but \why is

there this di�erence?" The reasons could be

� an error in generic model interpretation;

� an error in speci�c model interpretation; or

� di�erences between the speci�c case and the

generic cases justify di�erent results.

An initial comparison of the speci�c model inter-

pretation table with the generic table has the ben-

e�cial e�ect of focusing attention on that portion

of the modeling interpretation that is most in need

of consideration.

The use of the generic interpretation is similar

to a situation where one is attempting to construct

a model interpretation during the completion of

the implementation phase. In this case, the task is

the construction of the model-correspondence ta-

ble. The generic model-correspondence table pro-

vides version-zero of the required table. Meticu-

lous review of the speci�c implementation in com-

parison to the generic model interpretation will

allow the identi�cation of both those rows that

match the speci�c conforming implementation ex-

actly and those system calls that need direct anal-

ysis and treatment.

GMI for POSIX.1

POSIX.1 is an especially lucrative target for

generic model interpretation. Not only are

there many trusted operating systems pledged

to POSIX.1 compliance, but also there is vo-

luminous open literature concerning Unix and

POSIX.1 (see, for example, [POSIX.1], [USL92a],

[USL92b]).

2There is the possibility, of course, that both the generic

and the speci�c model interpretations are erroneous, but

that their errors compensate, making the rows match each

other. It is assumed that independent commission of

such mistakes by model-interpretors is rare enough to be

disregarded.

Types Code

Access A

A/policy control A/C

A/post-mediation access A/A

A/other factors A/O

A/O/groups A/O/

A/O/owner A/O/O

A/O/pathname resolution A/O/P

A/O/attributes A/O/A

A/O/id's A/O/I

Process P

P/address space P/A

P/memory P/M

Job Control J

J/signals J/S

J/locks J/L

J/pipes J/P

Files F

F/descriptors F/D

F/link F/L

IPC I

I/msgs I/M

I/sEmaphores I/E

I/sHared memory I/H

Resources R

R/devices R/D

R/D/STREAMS R/D/S

R/a�nity R/A

R/�le systems R/F

Operations O

O/networking O/N

O/stat O/S

O/auDit O/D

O/auThentication O/T

Magic M

vfun's V

Figure 7: \Types" of POSIX System Calls



System Call Corresponding Rules

exit release-access

accept get-access

chmod grant/rescind-access

close release-access

connect get-access

creat create-object

lcntl create/delete-object

mkmldir create-objects

mknod create-objects

mount create-objects

sem release id release-access, delete-object

setoacl grant/rescind-access

setomac change-object-level

dup get-access

dup2 get-access

fchmod grant/rescind-access

mkdir create-object

mount create-objects

msgctl release-access, delete-object

msgget create-object, get-access

open get-access

rmdir delete-object

semctl release-access, delete-object

semget create-object, get-access

shmat get-access

shmctl release-access, delete-object

shmdt release-access

shmget create-object, get-access

socket create-object

socketpair create-object

symlink create-object

umount delete-subtree

mknod create-object

Figure 8: POSIX.1 Correspondence to Model

The situation of treating POSIX.1 generically

is like the non-ideal situations above, but there

is no expectation that more information will ever

be available. That is, the details of a speci�c con-

forming implementationwill never be available un-

til that model interpretation is undertaken. Be-

cause of this intrinsic conditionality, the generic

modeling interpretation will adopt a variation of

the ideal approach described above.

In the context of a speci�c system, the full list

of TCB modules will be a superset of the required

POSIX.1 system calls. In the general case, there-

fore, the table of TCB modules constructed will

necessarily be conditional and incomplete. The

best that can be done is to construct a best-e�orts

modules-to-model table, a list of those POSIX.1

system calls that should usually be interpreted in

modeling terms. From that conditional table, a

corrresponding conditional model-correspondence

table can be constructed.

In sum, the generic-model-interpretation plan

for POSIX.1 is to construct a table of POSIX sys-

tem calls that will normally be modeled, together

with corresponding model rules.

Analysis of POSIX.1 identi�ed the types shown

in Figure 7.3 The post-mediation access subtype

was included with the mandatory types for model

interpretation. The correspondence to model rules

is shown in Figure 8.

GMI for SQL

SQL is also a lucrative target for model in-

terpretation, but the wide variety in possibilities

for Reference-Monitor-protected \objects" makes

a comprehensive generic model interpretation a

larger task than for POSIX.1. The results in-

cluded in [MS96b] and summarized here constitute

an initial step in generic model interpretation for

SQL. The correspondences derived were produced

by limiting the scope of attention to databases,

tables, rows, view de�nitions, and columns.4

As is the case for POSIX.1, there is substantial

open literature concerning SQL (see, for example,

[BED93], [LEFF91]).

Analysis of SQL identi�ed the types shown in

Figure 9. The post-mediation access subtype was

3It is important to note that the types used for this

analysis were de�ned subjectively and are in no way unique

or necessary. Moreover, the types are not disjoint. In fact,

some of the types were explicitly noted as overlapping with

other types.
4Other object-candidates are indexes, constraints, and

stored procedures.



Types Code

Access A

A/policy control A/C

A/post-mediation access A/A

A/other factors A/O

SQL SQL

Admin & Support A&S

security S

S/Grant,Revoke S/GR

S/Audit Support S/A

S/Tier 2 Audit Layer S/A2

S/M.A.C. S/M

S/D.A.C. S/D

S/Discrete Privilege S/P

Data Integrity I

I/concurrency I/C

I/transaction I/T

I/recovery I/R

I/mirroring I/M

I/archiving I/A

Object Management O

O/DB Management O/D

O/System Catalog O/SC

O/Table O/T

O/Row Data O/R

O/Index O/I

O/Constraint O/C

O/View O/V

O/Synonym O/Y

O/Statistics O/S

O/In-Core Dictionary O/Lex

O/Stored Procedures O/SP

Data D

D/DB Services D/D

D/B-tree D/Bt

D/Row D/R

Resource Management R

R/DB space & chunk R/D

R/Page R/P

R/Page & slot R/PS

R/Shared memory R/SM

R/Bu�er R/B

R/Header R/H

Magic M

vfun's V

Figure 9: \Types" of SQL Commands

SQL Call Corresponding Rules

Change Process Label change-object-level

Create Database create-object

Drop Database delete-object

Open-Lock Database get-access

Close-Unlock Database release-access

Create System Catalog create-object

Open System Catalog

Table

get-access

Drop System Catalog delete-object

Read System Catalog null transition

Write System Catalogs null transition

Create Table create-object

Drop Table delete-object

Alter Table null transition

Fast Alter Table null transition

Open-Lock Table get-access

Close Table release-access

Insert Row create-object

Delete Row delete-object

Select Row null transition

Update Row null transition

Create View create-object

Drop View delete-object

Create Database Entry create-object

Open Database Entry get-access

Drop Database Entry delete-object

Close Database release-access

Grant Privilege give-access

Revoke Privilege rescind-access

Modify Database Label change-object-level

Modify Table Sensitivity

Label

change-object-level

Modify Row Sensitivity

Label

change-object-level

Grant Table Level

Privilege

give-access

Revoke Table Level

Privilege

rescind-access

Grant Database Level

Privilege

give-access

Grant Table Level

Privilege

give-access

Revoke Database Level

Privilege

rescind-access

Revoke Table Level

Privilege

rescind-access

Figure 10: SQL Correspondence to Model



included with the mandatory types for model in-

terpretation. The correspondence to model rules

is shown in Figure 10.

Summary

The bene�ts of producing generic model interpre-

tations as a tool to facilitate system and product

evaluation are many. The work reported herein

has both developed the theory of generic model

interpretations and begun the task of providing

generic model interpretations for POSIX.1 and

SQL. The POSIX.1 results are very comprehen-

sive, a result both of the more extensive infor-

mation available on POSIX and of the narrower

scope available for vendors producing a POSIX-

compliant product that also meets B2 or above

requirements from the TCSEC. The SQL results

are also comprehensive for the object candidates

addressed, but further work will be required to

complete the consideration of all possible object

candidates.

To the bene�ts provided by industry standards

can now be added the ability to facilitate model

interpretation preparation and review through the

use of generic model interpretations.

References

[AND72] J. P. Anderson, \Computer Security

Technology Planning Study",

ESD{TR{73{51, Vol. I, AD{758 206,

ESD/AFSC, Hanscom AFB, MA,

October 1972.

[BLP73] D. E. Bell and L. J. La Padula,

\Secure Computer Systems:

Mathematical Foundations",

MTR{2547, Vol. I, The MITRE

Corporation, Bedford, MA, 1 March

1973. (ESD{TR{73{278{I)

[BELL73] D. E. Bell, \Secure Computer

Systems: A Re�nement of the

Mathematical Model", MTR{2547,

Vol. III, The MITRE Corporation,

Bedford, MA, December 1973.

(ESD{TR{73{278{III)

[BLP75] D. E. Bell and L. J. La Padula,

\Secure Computer Systems: Uni�ed

Exposition and Multics

Interpretation", MTR{2997, The

MITRE Corporation, Bedford, MA,

July 1975. (ESD{TR{75{306)

[BL86] D. E. Bell, "Secure Computer

Systems: A Network Interpretation",

Proc., 2nd Aerospace Conference,

McLean, VA, 1986, 32-39.

[BL86] D. E. Bell, "Trusted Xenix

Interpretation: Phase 1", Proc. 13th

NCSC, Washington, DC, 1990,

333-339.

[BIBA77] K. Biba, \Integrity Considerations

for Secure Computer Systems", The

MITRE Corporation, Bedford, MA,

April 1977.

[BED93] J. S. Bowman, S. L. Emerson,

M. Darnovsky, , The Practical SQL

Handbook, 2nd ed. (Addison-Wesley:

Reading, MA, 1993)

[GOME82] J. A. Goguen and J. Meseguer,

\Security Policies and Security

Models", Proc. 1982 IEEE Symp. on

Security and Privacy, Oakland, CA,

April 26{28, 1982, 11{20.

[GOME84] J. A. Goguen and J. Meseguer,

\Unwinding and Inference Control",



Proc. 1984 IEEE Symp. on Security

and Privacy, Oakland, CA, April

29{May 2, 1984, 75{86.

[LPB73] L. J. La Padula and D. Elliott Bell,

\Secure Computer Systems: A

Mathematical Model", MTR{2547,

Vol. II, The MITRE Corporation,

Bedford, MA, 31 May 1973.

(ESD{TR{73{278{II)

[LEFF91] Using INFORMIX-SQL, 2nd ed.

(Addison-Wesley: Reading, MA,

1991)

[MS96a] \Generic Model Interpretation of

POSIX.1", Mitretek Systems,

McLean, VA, to appear.

[MS96b] \Generic Model Interpretation of

SQL", Mitretek Systems, McLean,

VA, to appear.

[POSIX.1] Information Technology { Portable

Operating System Interface (POSIX)

{ Part 1: System Application

Program Interface (API) [C

Language]. ISO/IEC 9945-1:1990,

September, 1990.

[TCSEC85] Department of Defense Trusted

Computer System Evaluation

Criteria, DoD 5200.28-STD,

December 1985.

[TDI91] Trusted Database Management

Interpretation of the Trusted

Computer System Evaluation

Criteria, NCSC-TG-021, Version 1,

April 1991.

[USL92a] Programming with Unix System

Calls: UNIX SVR4.2. (Prentice-Hall:

Englewood Cli�s, NJ, 1992)

[USL92b] Operating System API Reference

UNIX SVR4.2. (Prentice-Hall:

Englewood Cli�s, NJ, 1992)

[WALT74] K. G. Walter, et al.\Primitive

Models for Computer Security",

ESD-TR-74-1147, Electronic

Systems Division (MCIT), Air Force

Systems Command, Hanscom AFM,

Bedford, MA, January, 1974.

[WEIS69] C. Weissman, \Security Controls in

the ADEPT-50 Time-Sharing

System", AFIPS Conf. Proc. 35

FJCC 1969, 27{38.

SAP Analysis Guidelines

1. One can determine for each system security

call whether a standard user (that is, one

running without \appropriate privilege") can

exercise the call and whether an administra-

tive user (that is, one running with \appro-

priate privilege") can exercise the call with

additional options or di�erent e�ect.

2. The security policies that will be addressed

in the model and modeling interpretation can

be speci�ed precisely.

3. For this exercise, the speci�ed security

policies are simple-security, discretionary-

security, and information ow in the exact

form of the *-property.

4. One can then determine whether each system

security call relates to the enforcement of the

speci�ed policy (really, \policies").

5. System Calls that a standard user can invoke

(indicated by S) and that relate to enforce-

ment of the speci�ed policies (indicated by

P) will de�nitely be modeled.

6. System Security Calls that an administrative

user can invoke (indicated by A) and that re-

late to enforcement of the speci�ed policies

(P) are options for modeling.

7. The decision to model an AP system secu-

rity call will be addressed on a case-by-case

basis. Back-of-the-envelope rationale for an

inclusion or exclusion will be generated in the

consideration of each AP system security call.

8. Calls that do not relate to the enforcement of

the speci�ed security policies and calls whose

e�ects are invisible in the model's state will

not be modeled.


